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The design of cooperative domains between DNA-binding 
ligands for modulation of the kinetics and thermodynamics of 
ligand-nucleic acid interactions is at an early stage of develop
ment.1-4 Pyrimidine oligodeoxyribonucleotides 11 nucleotides 
(nt) in length are known to bind cooperatively to abutting sites 
on double-helical DNA by triple-helix formation, resulting in a 
20-fold increase in the association constant for one oligonucleotide 
in the presence of the neighboring oligonucleotide.3 This 1.8 
kcal*mol~' interaction energy may arise from 7r-stacking between 
the bases at the triple-helical junction.3 The incorporation of 
discrete dimerization domains to oligonucleotides such as those 
capable of forming a short Watson-Crick helix produces a 
cooperative interaction and results in a 44-fold enhancement in 
the association constant of one oligonucleotide in the presence of 
a neighbor.2 

An alternative approach to increasing cooperativity by the 
addition of dimerization domains is the use of modified bases, 
which could allow greater interactions between bases at the triple-
helical junction. It is known that replacing 2'-deoxycytidines in 
the third strand with 5-methyl-2'-deoxycytidines, and replacing 
2'-deoxyuridines with thymidines, 5-ethynyl-2'-deoxyuridines, or 
5-( 1 -propynyl)-2'-deoxyuridines, increases the stability of triple-
helical complexes.5-6 If this enhanced stability is due to increased 
stacking in the third strand, one might expect similar effects at 
triple-helix junctions. We report here that two short oligode
oxyribonucleotides containing 5-(l-propynyl)-substituted 2'-
deoxyuridine (PU) and 5-methyl-2'-deoxycytidine (MeC) bind 
cooperatively to adjacent sites on double-helical DNA at mi-
cromolar concentrations (10 mM Bis-Tris«HCl at pH 7.0, 10 
mM NaCl, 1 mM spermine, 24 0C) (Figure 1). The equilibrium 
constant of an 8-mer binding in the presence of a neighboring 
bound 8-mer is enhanced by a factor of at least 40 (relative to 
the 8-mer alone) under the conditions used. 

A system was designed in which two 8-nt oligodeoxyribonu
cleotides, 1 and 2, bind site-specifically to adjacent sites on an 
850-bp 3'-32P-end-labeled duplex DNA fragment via specific 
Hoogsteen hydrogen bonding (PU-AT and MeC + GC) (Figure 
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Figure 1. Schematic representation of a complex composed of two triple-
helix-forming oligonucleotides binding at adjacent sites on double-helical 
DNA. Thick solid lines represent the DNA backbone of the target site 
and associated oligonucleotides. Thin solid lines represent Watson-Crick 
hydrogen bonds while dashed lines indicate Hoogsteen hydrogen bonds. 
Binding of the oligonucleotides is assessed by affinity cleavage using T*. 
PU and MeC represent the C5-propynyl-substituted 2'-deoxyuridine and 
5-methyl-2'-deoxycytidine nucleotides, respectively. 

1 ).7 Thymidine-EDTA (T*) was incorporated at the 5'-terminus 
of oligonucleotide 1 to allow thermodynamic analysis of site-
specific binding using the quantitative affinity cleavage titration 
method.910 To determine the interaction energy between oli
gonucleotides 1 and 2, the equilibrium association constants Kx 

for 1 binding to site A alone and Kx ,2 for 1 binding to site A in 
the presence of 1.0 /xM 2 bound to neighboring site B were 
measured.310 Analysis of cleavage data yielded equilibrium 
association constants of <2 X 104 M-1 for 1 binding alone (Kx) 
and 8.0 (±2.1) X 105 M"1 for 1 in the presence of 1.0 /*M 2 (Kx<2), 
resulting in a dramatic binding enhancement, Kx^fKx > 40 (Table 
I ) . " This corresponds to a cooperative interaction energy of 
>4.5 kcal-mol-'.12 

For comparison, binding of the corresponding unmodified 
oligonucleotides 3 and 4 containing a methyl (thymidine) instead 
of a propynyl group at the 5-position of 2'-deoxyuridine, was 
analyzed under the same conditions (Figure 1). Oligonucleotide 
3 at <100 nM both in the absence and in the presence of 1.0 nM 
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Table 1. Equilibrium Association Constants for 8-mer Modified 
Triple Helix Forming Oligonucleotides Binding at Adjacent Sites on 
DNA" 

oligonucleotide A-(M-1) 

1 
1 + 2 ( 1 . O M M ) 
1 + 4 ( 1 . O M M ) 
3 
3 + 2 ( 1 . O M M ) 

<2 X 104 

8.0 (±2.1) XlO5 

<2 X 104 

<2X10< 
9.7 (±0.6) X 104 

" Values reported in the table are mean values measured from affinity 
cleavage titration experiments performed in Association buffer (10 mM 
Bis-Tris-HCl, 10 mM NaCl, 1 mM spermine, pH 7.0, 24 "C). 

4 did not produce any observable cleavage, and therefore no 
cooperativity could be measured.13'14 

Possible sources for the cooperative interaction between oligo
nucleotides containing 5-(l-propynyl)-2'-deoxyuridines include 
a structural transition between adjacent sites on DNA and 
increased base stacking between the propyne-substituted T-
deoxyuridines.15-16 The right-handed nature of the triplex allows 
stacking of the propyne group of the base on the 3'-side of the 
junction onto the S'-base across the junction, but not the stacking 
of the propyne group at the 5'-side of the junction onto the 3'-
adjacent base (Figure 2). It is reasonable to believe that a 5'-
TPU-3' stack (Figure 2A) is more favorable than a 5'-PUT-3' 
stack (Figure 2B) due to greater interactions between delocalized 
ir-orbitals in the former rather than in the latter.17 

To test this model, experiments were carried out to determine 
the interaction energies observed when 5-(l-propynyl)-modified 
oligonucleotide 1 binds to the 5'-side of the triple helical junction 
(site A, Figure 1) in the presence of 1.0 /iM unmodified 
oligonucleotide 4 bound to the 3'-side (site B, Figure 1), and 
when unmodified oligonucleotide 3 binds to the 5'-side in the 
presence of 1.0 nM modified oligonucleotide 2 bound to the 3'-
side (Figure 1). In both cases, site B should be <2% occupied 
by 1.0 jiM oligonucleotide 2 or 4 in the absence of bound 1 or 
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Figure 2. Base-stacking configuration of two HJ-AT triples drawn on the 
basis of the structure proposed for DNA triple-helix (T-AT)n.

18 The C l ' 
atoms of the deoxyribose sugars are represented by the open circles. The 
5' - • 3' polarity of the strands is indicated by the 9 symbols (into the 
plane of the page) and O (out of the plane of the page). 

3. Under the titration conditions, modified oligonucleotide 1 at 
<20 MM in the presence of 1.0 /uM unmodified 4 produced minimal 
cleavage, and its equilibrium constant for binding to site A could 
not be measured. In contrast, unmodified oligonucleotide 3 bound 
to site A in the presence of 1.0 MM modified 2 with an increased 
association constant (A"3,2 = 9.7 (±0.6) X 104 M"1) (Table 1). 
These results are consistent with a model wherein cooperativity 
between a modified and an unmodified oligonucleotide is 
dramatically affected by the position (3' or 5') of the modified 
oligonucleotide with respect to the triple-helical junction due to 
two stacking arrangements (Figure 2). This suggests that some 
significant contribution to the interaction energy between 1 and 
2 originates from stacking between the modified bases." We 
conclude that cooperativity can be used to allow modified 
oligonucleotides as small as 8 nt in the molecular weight range 
of 2500 to bind to adjacent sites covering a specific 16-bp region 
on double-helical DNA at micromolar concentrations. 
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(19) Consistent with this, separation of sites A and B by a one-base-pair 
gap abolishes the binding enhancement of oligonucleotide 1 in the presence 
of oligonucleotide 2. 


